Meta-analitik Kümülasyon – Meta-Analiz Ödevleri – Meta-Analiz Alanında Tez Yaptırma – Meta-Analiz Tez Yaptırma Ücretleri
Meta-analitik Kümülasyon
Örnekler, korelasyonel çalışmalar için istatistiksel gücü göstermektedir, ancak deneysel çalışmalar için eşit derecede gerçekçidir. Deneysel çalışmalarda temel istatistik, korelasyon katsayısı değil, iki grubun, deney ve kontrol gruplarının ortalamaları arasındaki standartlaştırılmış farktır. Bu, standart sapma birimlerindeki iki ortalama arasındaki farktır ve d-değeri istatistiği olarak adlandırılır.
d istatistiği, korelasyonun kabaca iki katı büyüklüğündedir. Bu nedenle, örnek, d = .51; bu, standart sapmanın yarısı kadar bir farktır, oldukça önemli bir farktır. Normal dağılımda 50. ve 69. persentiller arasındaki farka karşılık gelir. Şekil 2.8a için karşılık gelen örnek boyutları deney grubunda N = 42 ve kontrol grubunda N = 41 olacaktır (veya tam tersi). Bu sayılar da nispeten büyüktür; birçok çalışma her grupta çok daha azına sahiptir.
Örnek, birçok deneysel çalışma için daha gerçekçi bir analoga dönüşüyor. Deney ve kontrol gruplarında 20’şer deneğin bulunduğu deneysel çalışmalara karşılık gelir. Her grupta 20 veya daha az (bazen 5 veya 10) olan birçok çalışma, özellikle örgütsel davranış ve karar verme laboratuvar çalışmaları gördük. .20’nin ρ değeri, gerçek çalışmalarda gözlemlenen birçok değerden daha büyük veya daha büyük bir değer olan .40’lık bir d değerine karşılık gelir.
Bu nedenle, küçük örneklemli çalışmaların düşük istatistiksel gücünü gösteren bu iki örnek ve bu tür çalışmalarda anlam testlerinin geleneksel kullanımından kaynaklanan sonuçlardaki hatalar deneysel çalışmalara da genellenir. d istatistiğinin özellikleri biraz farklı olduğundan, burada istatistiksel güç için verilen kesin rakamlar geçerli olmayacaktır; istatistiksel güç, deneysel çalışmalarda aslında biraz daha düşüktür. Ancak rakamlar durumu açıklamaya yetecek kadar yakındır.
Meta-analiz, gösterilen çalışmaları ve 2.8b’yi nasıl ele alır? İlk olarak, meta-analiz, her bir çalışma grubundaki ortalama r’nin hesaplanmasını gerektirir. Çalışmalar için, ortalama r, doğru değer olan .25 olarak bulunacaktır. Çünkü hesaplanan ortalama yine doğru değer olan .20 olacaktır. Bu r ̄’ler daha sonra örnekleme hatasından beklenen varyans miktarını hesaplamak için kullanılacaktır.
Bu değer daha sonra, örnekleme varyansının üzerinde ve üzerinde herhangi bir varyansın bırakılıp bırakılmadığını görmek için gözlemlenen korelasyonlardaki varyans miktarından çıkarılır. Gözlenen varyans (.10344)2 = .0107’dir. Bu nedenle, bu çalışmalar arasındaki korelasyonlardaki gerçek varyans miktarı Sρ2 = .0107 − .0107 = 0’dır.
PRISMA Checklist Türkçe
cma meta-analiz programı indir
Meta-analiz Nedir
Meta-analiz pdf
Cma ile Meta-Analiz
meta-analiz nedir nasıl yapılır
meta-analiz örneği
sistematik derleme ve meta-analiz nedir
Meta-analitik sonuç, yalnızca bir ρ (ρ = .25) değerinin olduğu ve çalışmalar arasında rs’deki tüm görünür değişkenliğin örnekleme hatası olduğudur. Böylece meta-analiz doğru sonuca götürür, geleneksel yaklaşım ise çalışmaların %25’inde ρ = 0 olduğu ve diğer %75’inde .18 ile yaklaşık olarak .46 arasında değiştiği sonucuna yol açmıştır.
Gerçekte gözlemlenen varyans (.1537)2 = .0236 = Sr2’dir. Yine, Sr2 − Se2 = 0 ve meta-analitik sonuç, tüm çalışmalarda yalnızca bir ρ değerinin olduğu—ρ = .20- ve farklı çalışmalarda rs’deki tüm değişkenliğin yalnızca örnekleme hatası olduğudur. Yine meta-analiz doğru sonuca götürürken, istatistiksel anlamlılık testlerinin geleneksel kullanımı yanlış sonuçlara yol açar. Buradaki ilke, d istatistikleri için aynıdır. Yalnızca belirli formüller farklıdır.
Buradaki örnekler varsayımsaldır, ancak gerçekçi değildir. Aslında buradaki nokta, gerçek verilerin çoğu zaman aynı şekilde davranmasıdır. Örneğin, içindeki gerçek verileri düşünün. Bu veriler, Sears, Roebuck ve Company’de dokuz farklı iş ailesi üzerinde yapılan bir çalışmada elde edilen geçerlilik katsayılarıdır.
Bu yedi testten herhangi biri için geçerlilik katsayıları bazı iş aileleri için önemlidir, ancak diğerleri için değildir. Örneğin, aritmetik testinin 1, 2, 5, 8 ve 9 numaralı iş aileleri için önemli geçerlilik katsayıları vardır; geçerlilik iş aileleri 3, 4, 6 ve 7 için önemli değildir. 9, çünkü bu iş aileleri için geçerli, diğerleri için geçerli değil.
Bu sonuç hatalıdır. Bu kitapta sunduğumuz meta-analiz yöntemlerinin uygulanması, Tablo 2.3’teki testler için iş aileleri arasındaki geçerliliklerdeki tüm farklılıkların örnekleme hatasından kaynaklandığını göstermektedir. Anlamlı olmayan geçerlilikler sadece düşük istatistiksel güçten kaynaklanmaktadır.
Örnekleme hatasının gerçek verilerdeki çalışma sonuçlarındaki tüm varyasyonu açıkladığı bir başka örnek Schmidt, Ocasio ve ark. (1985). Bu kapsamlı çalışmada, gözlemlenen korelasyon katsayıları, farklı çalışmalarda -.16’dan .61’e kadar, .78 korelasyon noktası aralığında değişiklik göstermiştir. Yine de ρ’nın gerçek değeri her çalışmada .22’de sabitti. (Aslında, her çalışma tek bir büyük çalışmadan rastgele bir örneklemdi.) Küçük örneklemli çalışmalarda örnekleme hatası, çalışma sonuçlarında muazzam değişkenlik yaratır. Araştırmacılar onlarca yıldır örnekleme hatasının ne kadar değişkenlik ürettiğini hafife aldılar.
Elbette örnekleme hatası, tüm çalışma setlerindeki tüm varyasyonu açıklamaz. Çoğu durumda, bu bölümde daha önce tartışıldığı gibi, diğer artefaktlar da çalışma sonuçlarında farklılıklara neden olur. Ve bazı durumlarda, örnekleme hatası ve diğer artefaktların (ölçüm hatası ve çalışmalar arasındaki aralık kısıtlama farklılıkları gibi) kombinasyonu bile tüm varyansı açıklayamaz. Bununla birlikte, bu artefaktlar hemen hemen her zaman çalışma sonuçlarındaki önemli miktardaki varyansı hesaba katar.
Ne Zaman ve Nasıl Biriktirilir?
Genel olarak, çalışmalar arasında sonuçların bir meta-analitik kümülasyonu kavramsal olarak basit bir süreçtir.
1.Mevcut her çalışma için istenen tanımlayıcı istatistiği hesaplayın ve bu istatistiğin çalışmalar arasında ortalamasını alın.
2. Araştırmalar arası istatistiklerin varyansını hesaplayın.
3.Örnekleme hatası nedeniyle miktarı çıkararak varyansı düzeltin.
4.Örnekleme hatası dışındaki çalışma gerçekleri için ortalamayı ve varyansı düzeltin.
5. Niteliksel olarak çalışmalar arasında sonuçlardaki potansiyel varyasyonun boyutunu değerlendirmek için düzeltilmiş standart sapmayı ortalamayla karşılaştırın. Ortalama, 0’dan büyük iki standart sapmadan fazlaysa, o zaman göz önünde bulundurulan ilişkinin her zaman pozitif olduğu sonucuna varmak mantıklıdır.
Uygulamada, kümülasyon genellikle daha sonraki bölümlerde inceleyeceğimiz çeşitli teknik karmaşıklıkları içerir.
Sonuçların kümülasyonu, aynı ilişkiyle ilgili veriler içeren en az iki çalışma olduğunda kullanılabilir. Örneğin, Crooked Corn Flakes’teki çalışmanız iş durumu ile iş tatmini arasında bir korelasyon içeriyorsa, bu korelasyonu Tuffy Bolts’taki daha önceki çalışmanızda bulunan korelasyonla karşılaştırmak isteyebilirsiniz.
Ancak, iki bağıntılı örnekleme hatasını düzeltmek için sunulan düzeltilmiş varyans prosedürlerinden farklı bir strateji kullanmak mümkündür. güven aralıkları örtüşürse, iki korelasyon arasındaki fark yalnızca örnekleme hatasından kaynaklanıyor olabilir ve ortalama, ortak değerlerinin en iyi tahminidir.
CMA ile Meta-Analiz cma meta-analiz programı indir Meta analiz Nedir meta-analiz nedir nasıl yapılır meta-analiz örneği Meta-analiz pdf PRISMA Checklist Türkçe Sistematik derleme ve meta-analiz Nedir